
Factoring and Discrete Log

Nadia Heninger

University of Pennsylvania

June 1, 2015

Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key

N = pq modulus

e encryption exponent

Private Key

p, q primes

d decryption exponent
(d = e−1 mod (p − 1)(q − 1))

Encryption

public key = (N, e)

ciphertext = messagee mod N

message = ciphertextd mod N

Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key

N = pq modulus

e encryption exponent

Private Key

p, q primes

d decryption exponent
(d = e−1 mod (p − 1)(q − 1))

Signing

public key = (N, e)

signature = messaged mod N

message = signaturee mod N

Computational problems

Factoring

Problem: Given N, compute its prime factors.

I Computationally equivalent to computing private key d .

I Factoring is in NP and coNP → not NP-complete (unless
P=NP or similar).

Computational problems

eth roots mod N
Problem: Given N, e, and c , compute x such that xe ≡ c mod N.

I Equivalent to decrypting an RSA-encrypted ciphertext.

I Equivalent to selective forgery of RSA signatures.
I Conflicting results about whether it reduces to factoring:

I “Breaking RSA may not be equivalent to factoring” [Boneh
Venkatesan 1998]
“an algebraic reduction from factoring to breaking
low-exponent RSA can be converted into an efficient factoring
algorithm”

I “Breaking RSA generically is equivalent to factoring”
[Aggarwal Maurer 2009]
“a generic ring algorithm for breaking RSA in ZN can be
converted into an algorithm for factoring”

I “RSA assumption”: This problem is hard.

A garden of attacks on textbook RSA

Unpadded RSA encryption is homomorphic under multiplication.
Let’s have some fun!

Attack: Malleability

Given a ciphertext c = Enc(m) = me mod N, attacker can forge
ciphertext Enc(ma) = cae mod N for any a.

Attack: Chosen ciphertext attack

Given a ciphertext c = Enc(m) for unknown m, attacker asks for
Dec(cae mod N) = d and computes m = da−1 mod N.

Attack: Signature forgery

Attacker wants Sign(x). Attacker computes z = xy e mod N for
some y and asks signer for s = Sign(z) = zd mod N. Attacker
computes Sign(z) = sy−1 mod N.

So in practice always use padding on messages.

http://xkcd.com/538/

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

So how hard is factoring?

sage: time factor(random_prime(2^32)*random_prime(2^32))

CPU times: user 3.96 ms, sys: 95 s, total: 4.06 ms

Wall time: 4 ms

1162180681 * 3036055123

sage: time factor(random_prime(2^64)*random_prime(2^64))

CPU times: user 65.1 ms, sys: 15.4 ms, total: 80.4 ms

Wall time: 136 ms

3467882422082372663 * 9260649369177772927

sage: time factor(random_prime(2^96)*random_prime(2^96))

CPU times: user 5.48 s, sys: 92.7 ms, total: 5.57 s

Wall time: 5.74 s

35446974246595767622419590689 * 62426036507249326299176493091

sage: time factor(random_prime(2^128)*random_prime(2^128))

CPU times: user 12min 9s, sys: 5.63 s, total: 12min 15s

Wall time: 12min 24s

199096156382647146999656258302432743511 * 310463278712884462474628803224478128161

Factoring in practice

Two families of factoring algorithms:

1. Algorithms whose running time depends on the size of the
factor to be found.

I Good for factoring small numbers, and finding small factors of
big numbers.

2. Algorithms whose running time depends on the size of the
number to be factored.

I Good for factoring big numbers with big factors.

Trial Division
Good for finding very small factors

Takes p/ log p trial divisions to find a prime factor p.

Pollard rho
Good for finding slightly larger prime factors

Intuition

I Try to take a random walk among elements modN.

I If p divides N, there will be a cycle of length p.

I Expect a collision after searching about
√
p random elements.

Details

I “Random” function: f (x) = x2 + c mod N for random c .

I For random starting point a, compute a, f (a), f (f (a)), . . .

I Naive implementation uses
√
p memory, O(1) lookup time.

I To reduce memory:
I Floyd cycle-finding algorithm: Store two pointers, and move

one twice as fast as the other until they coincide.
I Method of distinguished points: Store points satisfying easily

tested property like k leading zeros.

Pollard rho
Good for finding slightly larger prime factors

Intuition

I Try to take a random walk among elements modN.

I If p divides N, there will be a cycle of length p.

I Expect a collision after searching about
√
p random elements.

Details

I “Random” function: f (x) = x2 + c mod N for random c .

I For random starting point a, compute a, f (a), f (f (a)), . . .

I Naive implementation uses
√
p memory, O(1) lookup time.

I To reduce memory:
I Floyd cycle-finding algorithm: Store two pointers, and move

one twice as fast as the other until they coincide.
I Method of distinguished points: Store points satisfying easily

tested property like k leading zeros.

Why is it called the rho algorithm?

Pollard rho in Sage

def rho(n):

a = 98357389475943875; c=10 # some random values

f = lambda x: (x^2+c)%n

a1 = f(a) ; a2 = f(a1)

while gcd(n, a2-a1)==1:

a1 = f(a1); a2 = f(f(a2))

return gcd(n, a2-a1)

sage: N = 698599699288686665490308069057420138223871

sage: rho(N)

2053

Reminders: Orders and groups

Theorem (Fermat’s Little Theorem)

ap−1 ≡ 1 mod p for any 0 < a < p.

Let ord(a)p be the order of a mod p. (Smallest positive integer
such that aord(a)p ≡ 1 mod p.)

Theorem (Lagrange)

ord(a)p divides p − 1.

Pollard’s p − 1 method
Good for finding special small factors

Intuition

I If ar ≡ 1 mod p then r | ord(a)p and p | gcd(ar − 1,N).

I Don’t know p, pick very smooth number r , hoping for ord(a)p
to divide it.

Definition: An integer is B-smooth if all its prime factors are ≤ B.

N=44426601460658291157725536008128017297890787

4637194279031281180366057

r=lcm(range(1,2^22)) # this takes a while ...

s=Integer(pow(2,r,N))

sage: gcd(s-1,N)

1267650600228229401496703217601

Pollard’s p − 1 method
Good for finding special small factors

Intuition

I If ar ≡ 1 mod p then r | ord(a)p and p | gcd(ar − 1,N).

I Don’t know p, pick very smooth number r , hoping for ord(a)p
to divide it.

Definition: An integer is B-smooth if all its prime factors are ≤ B.

N=44426601460658291157725536008128017297890787

4637194279031281180366057

r=lcm(range(1,2^22)) # this takes a while ...

s=Integer(pow(2,r,N))

sage: gcd(s-1,N)

1267650600228229401496703217601

Pollard p − 1 method

I This method finds larger factors than the rho method (in the
same time)

...but only works for special primes.

In the previous example,

p − 1 = 26 · 32 · 52 · 17 · 227 · 491 · 991 · 36559 · 308129 · 4161791

has only small factors (aka. p − 1 is smooth).

I Many crypto standards require using only “safe primes” a.k.a
primes where p − 1 = 2q + 1, so p − 1 is really non-smooth.

I This recommendation is outdated for RSA. The elliptic curve
method (next slide) works even for “safe” primes.

Lenstra’s Elliptic Curve Method
Good for finding medium-sized factors

Intuition

I Pollard’s p − 1 method works in the multiplicative group of
integers modulo p.

I The elliptic curve method is exactly the p − 1 method, but
over the group of points on an elliptic curve modulo p:

I Multiplication of group elements becomes addition of points
on the curve.

I All arithmetic is still done modulo N.
I Tanja will tell you much more about elliptic curves.

Theorem (Hasse)

The order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p].

There are lots of smooth numbers in this interval.

If one elliptic curve doesn’t work, try until you find a smooth order.

Lenstra’s Elliptic Curve Method
Good for finding medium-sized factors

Intuition

I Pollard’s p − 1 method works in the multiplicative group of
integers modulo p.

I The elliptic curve method is exactly the p − 1 method, but
over the group of points on an elliptic curve modulo p:

I Multiplication of group elements becomes addition of points
on the curve.

I All arithmetic is still done modulo N.
I Tanja will tell you much more about elliptic curves.

Theorem (Hasse)

The order of an elliptic curve modulo p is in
[p + 1− 2

√
p, p + 1 + 2

√
p].

There are lots of smooth numbers in this interval.

If one elliptic curve doesn’t work, try until you find a smooth order.

Elliptic Curves in Sage

def curve(d):

frac_n = type(d)

class P(object):

def __init__(self,x,y):

self.x,self.y = frac_n(x),frac_n(y)

def __add__(a,b):

return P((a.x*b.y + b.x*a.y)/(1 + d*a.x*a.y*b.x*b.y),

(a.y*b.y - a.x*b.x)/(1 - d*a.x*b.x*a.y*b.y))

def __mul__(self, m):

return double_and_add(self,m,P(0,1))

...

Elliptic Curve Factorization

def ecm(n,y,t):

Choose a curve and a point on the curve.

frac_n = Q(n)

P = curve(frac_n(1,3))

p = P(2,3)

q = p * lcm(xrange(1,y))

return gcd(q.x.t,n)

I Method runs very well on GPUs.

I Still an active research area.

ECM is very efficient at factoring random numbers, once small
factors are removed.

Heuristic running time Lp(1/2,
√

2) = O(e
√
2
√
ln p ln ln p).

Quadratic Sieve Intuition: Fermat factorization

Main insight: If we can find two squares a2 and b2 such that

a2 ≡ b2 mod N

Then
a2 − b2 = (a + b)(a− b) ≡ 0 mod N

and we might hope that one of a + b or a− b shares a nontrivial
common factor with N.

First try:

1. Start at c = d
√
Ne

2. Check c2 − N, (c + 1)2 − N, . . . until we find a square.

This is Fermat factorization, which could take up to p steps.

Quadratic Sieve Intuition: Fermat factorization

Main insight: If we can find two squares a2 and b2 such that

a2 ≡ b2 mod N

Then
a2 − b2 = (a + b)(a− b) ≡ 0 mod N

and we might hope that one of a + b or a− b shares a nontrivial
common factor with N.

First try:

1. Start at c = d
√
Ne

2. Check c2 − N, (c + 1)2 − N, . . . until we find a square.

This is Fermat factorization, which could take up to p steps.

Quadratic Sieve
General-purpose factoring

Intuition
We might not find a square outright, but we can construct a
square as a product of numbers we look through.

1. Sieving Try to factor each of c2 − N, (c + 1)2 − N, . . .

2. Only save a di = c2i −N if all of its prime factors are less than
some bound B. (If it is B-smooth.)

3. Store each di by its exponent vector di = 2e23e3 . . .BeB .

4. If
∏

i di is a square, then its exponent vector contains only
even entries.

5. Linear Algebra Once enough factorizations have been
collected, can use linear algebra to find a linear dependence
mod2.

6. Square roots Take square roots and hope for a nontrivial
factorization. Math exercise: Square product has 50% chance
of factoring pq.

Quadratic Sieve
General-purpose factoring

Intuition
We might not find a square outright, but we can construct a
square as a product of numbers we look through.

1. Sieving Try to factor each of c2 − N, (c + 1)2 − N, . . .

2. Only save a di = c2i −N if all of its prime factors are less than
some bound B. (If it is B-smooth.)

3. Store each di by its exponent vector di = 2e23e3 . . .BeB .

4. If
∏

i di is a square, then its exponent vector contains only
even entries.

5. Linear Algebra Once enough factorizations have been
collected, can use linear algebra to find a linear dependence
mod2.

6. Square roots Take square roots and hope for a nontrivial
factorization. Math exercise: Square product has 50% chance
of factoring pq.

Quadratic Sieve
General-purpose factoring

Intuition
We might not find a square outright, but we can construct a
square as a product of numbers we look through.

1. Sieving Try to factor each of c2 − N, (c + 1)2 − N, . . .

2. Only save a di = c2i −N if all of its prime factors are less than
some bound B. (If it is B-smooth.)

3. Store each di by its exponent vector di = 2e23e3 . . .BeB .

4. If
∏

i di is a square, then its exponent vector contains only
even entries.

5. Linear Algebra Once enough factorizations have been
collected, can use linear algebra to find a linear dependence
mod2.

6. Square roots Take square roots and hope for a nontrivial
factorization. Math exercise: Square product has 50% chance
of factoring pq.

Quadratic Sieve
General-purpose factoring

Intuition
We might not find a square outright, but we can construct a
square as a product of numbers we look through.

1. Sieving Try to factor each of c2 − N, (c + 1)2 − N, . . .

2. Only save a di = c2i −N if all of its prime factors are less than
some bound B. (If it is B-smooth.)

3. Store each di by its exponent vector di = 2e23e3 . . .BeB .

4. If
∏

i di is a square, then its exponent vector contains only
even entries.

5. Linear Algebra Once enough factorizations have been
collected, can use linear algebra to find a linear dependence
mod2.

6. Square roots Take square roots and hope for a nontrivial
factorization. Math exercise: Square product has 50% chance
of factoring pq.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.

542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.

552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.

562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.

572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.

582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

An example of the quadratic sieve

Let’s try to factor N = 2759.

Sieving values (d
√
N + ie)2 mod N:

532 − 2759 = 50 = 2 · 52.
542 − 2759 = 157.
552 − 2759 = 266.
562 − 2759 = 377.
572 − 2759 = 490 = 2 · 5 · 72.
582 − 2759 = 605 = 5 · 112.

Linear Algebra: The product 50 · 490 · 605 is a square:
22 · 54 · 72 · 112.

Recall idea: If a2 − N is a square b2 then N = (a− b)(a + b).

QS computes gcd{2759, 53 · 57 · 58−
√

50 · 490 · 605} = 31.

Quadratic Sieve running time

I How do we choose B?

I How many numbers do we have to try to factor?

I Depends on (heuristic) probability that a randomly chosen
number is B-smooth.

Running time: LN(1/2, 1) = e(1+o(1))
√
lnN ln lnN .

Number field sieve
Best running time for general purpose factoring

Insight

I Replace relationship a2 = b2 mod N with a homomorphism
between ring of integers OK in a specially chosen number field
and ZN .

ϕ : OK 7→ ZN

Algorithm

1. Polynomial selection Find a good choice of number field K .

2. Relation finding Factor elements over OK and over Z.

3. Linear algebra Find a square in OK and a square in Z
4. Square roots Take square roots, map into Z, and hope we

find a factor.

Running time: LN(1/3, 3
√

64/9) = e(1.923+o(1))(lnN)1/3(ln lnN)2/3 .

Running the NFS with CADO-NFS

N

polynomial
selection

sieving linear
algebra

square
root

p

Sieving Linear Algebra

I lpb core-years rows core-years

RSA-512 14 29 0.5 4.3M 0.33

Times for 75 c4.8xlarge Amazon ec2 instances:

polysel sieving linalg sqrt

2400 cores 36 cores 36 cores

RSA-512 1.5 hours 2.3 hours 3 hours 5 mins

Does anyone use 512-bit RSA?

International Traffic in Arms Regulations
April 1, 1992 version

Category XIII--Auxiliary Military Equipment ...

(b) Information Security Systems and equipment, cryptographic devices,

software, and components specifically designed or modified therefore,

including:

(1) Cryptographic (including key management) systems, equipment,

assemblies, modules, integrated circuits, components or software with the

capability of maintaining secrecy or confidentiality of information or

information systems, except cryptographic equipment and software as

follows:

(i) Restricted to decryption functions specifically designed to allow the

execution of copy protected software, provided the decryption functions

are not user-accessible.

(ii) Specially designed, developed or modified for use in machines for

banking or money transactions, and restricted to use only in such

transactions. Machines for banking or money transactions include automatic

teller machines, self-service statement printers, point of sale terminals

or equipment for the encryption of interbanking transactions.

...

Bernstein v. US

(1) CJ 191-92

61. On or about June 30, 1992, Plaintiff submitted a CJ Request to

Defendant STATE DEPARTMENT to determine whether publication of 1) the paper

entitled "The Snuffle Encryption System," 2) source code for the encryption

portion of Snuffle, and 3) source code for the decryption portion of Snuffle

required a license under the ITAR. Filed under seal herewith as Exhibit

"A" is a true and correct copy of the cover letter accompanying CJ 191-92.

62. Plaintiff is informed and believes and based upon such

information and belief alleges that his request, labelled CJ 191-92 by the

Defendant STATE DEPARTMENT, was referred to, among others, Defendants MARK

KORO and GREG STARK acting under color of authority of Defendant NATIONAL

SECURITY AGENCY for determination of whether a license was required prior

to publication of the Items.

63. On or about August 20, 1992, Defendant WILLIAM G. ROBINSON,

acting under color of authority of Defendant STATE DEPARTMENT, informed

Plaintiff that he would need a license in order to publish the items

included in CJ 191-92. Attached hereto as Exhibit "B" is a true and

correct copy of Defendant ROBINSON’s letter to Plaintiff.

Commerce Control List: Category 5 - Info. Security
(From 2014)

a.1.a. A symmetric algorithm employing a key length

in excess of 56-bits; or

a.1.b. An asymmetric algorithm where the security of the

algorithm is based on any of the following:

a.1.b.1. Factorization of integers in excess of 512 bits (e.g., RSA);

a.1.b.2. Computation of discrete logarithms in a multiplicative

group of a finite field of size greater than 512 bits (e.g., Diffie-

Hellman over Z/pZ); or

a.1.b.3. Discrete logarithms in a group other than mentioned

in 5A002.a.1.b.2 in excess of 112 bits (e.g., Diffie-Hellman

over an elliptic curve);

a.2. Designed or modified to perform cryptanalytic functions;

Export cipher suites in TLS

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_Anon_EXPORT_WITH_RC4_40_MD5

TLS_DH_Anon_EXPORT_WITH_DES40_CBC_SHA

In March 2015, export cipher suites supported by 36.7% of the 14
million sites serving browser-trusted certificates!

FREAK attack [BDFKPSZZ 2015]: Use fast 512-bit factorization
to downgrade modern browsers to broken export-grade RSA.

Textbook Diffie-Hellman
[Diffie Hellman 1976]

Public Parameters

G a cyclic group (e.g. F∗p, or an elliptic curve)

g group generator

Key Exchange

ga

gb

gabgab

Computational problems

Discrete Log

Problem: Given ga, compute a.

I Solving this problem permits attacker to compute shared key
by computing a and raising (gb)a.

I Discrete log is in NP and coNP → not NP-complete (unless
P=NP or similar).

Computational problems

Diffie-Hellman problem

Problem: Given ga, gb, compute gab.

I Exactly problem of computing shared key from public
information.

I Reduces to discrete log in some cases:
I “Diffie-Hellman is as strong as discrete log for certain primes”

[den Boer 1988] “both problems are (probabilistically)
polynomial-time equivalent if the totient of p − 1 has only
small prime factors”

I “Towards the equivalence of breaking the Diffie-Hellman
protocol and computing discrete logarithms” [Maurer 1994] “if
. . . an elliptic curve with smooth order can be construted
efficiently, then . . . [the discrete log] can be reduced efficiently
to breakingthe Diffie-Hellman protocol”

I (Computational) Diffie-Hellman assumption: This problem is
hard in general.

The DSA Algorithm

DSA Public Key

p prime

q prime, divides (p − 1)

g generator of subgroup of
order q mod p

y = g x mod p

Verify
u1 = H(m)s−1 mod q
u2 = rs−1 mod q

r
?
= gu1yu2 mod p mod q

Private Key

x private key

Sign
Generate random k.
r = gk mod p mod q
s = k−1(H(m) + xr) mod q

Computational problems

Discrete Log

I Breaking DSA is equivalent to computing discrete logs in the
random oracle model. [Pointcheval, Vaudenay 96]

Discrete log algorithms

Three families of discrete log algorithms:

1. Algorithms whose running time depends on the size of the
order of the subgroup.

I Good for computing discrete logs in subgroups of small or
smooth order.

2. Algorithms whose running time depends on the size of the log.

I Good for computing discrete logs in a known small interval.

3. Algorithms whose running time depends on the size of the
modulus.

I Good for computing discrete logs in subgroups of large order.

Computing Discrete Logs in O(
√
q) time

Goal: Solve g ` ≡ t mod p. g has order q.

Baby-Step Giant-Step Algorithm

1. Compute g0, g b
√
qc, g2b√qc, “Giant steps”

g0b√qc g1b√qc g2b√qc g3b√qc g4b√qc

t

2. Compute tg1, tg2, . . . until hit “giant step”. “Baby steps”

g0b√qc g1b√qc g2b√qc g3b√qc g4b√qc

t tg5

3. Solve for t from collision: tg5 = g3b√qc

I Also works for finding ` in known interval.

Computing Discrete Logs in O(
√
q) time

Goal: Solve g ` ≡ t mod p. g has order q.

Baby-Step Giant-Step Algorithm

1. Compute g0, g b
√
qc, g2b√qc, “Giant steps”

g0b√qc g1b√qc g2b√qc g3b√qc g4b√qc

t

2. Compute tg1, tg2, . . . until hit “giant step”. “Baby steps”

g0b√qc g1b√qc g2b√qc g3b√qc g4b√qc

t tg5

3. Solve for t from collision: tg5 = g3b√qc

I Also works for finding ` in known interval.

Computing Discrete Logs in O(
√
q) time

Goal: Solve g ` ≡ t mod p. g has order q.

Baby-Step Giant-Step Algorithm

1. Compute g0, g b
√
qc, g2b√qc, “Giant steps”

g0b√qc g1b√qc g2b√qc g3b√qc g4b√qc

t

2. Compute tg1, tg2, . . . until hit “giant step”. “Baby steps”

g0b√qc g1b√qc g2b√qc g3b√qc g4b√qc

t tg5

3. Solve for t from collision: tg5 = g3b√qc

I Also works for finding ` in known interval.

Pollard rho for discrete log

I Can also use Pollard rho idea to compute discrete logs.

I Take random walk; terminates in O(
√
q) time. Reduces

storage requirement.

I Need to use a different random function. Pollard suggested

f (x) =

gx 1 ≤ x < p/3
x2 p/3 ≤ x < 2p/3
yx 2p/3 ≤ x < p

Using more intervals works better.

Taking advantage of subgroups: Pohlig-Hellman

I If q =
∏

i q
ei
i :

1. Can solve discrete log in subgroup of order qi in time
√
qi .

2. Can solve discrete log in each subgroup of order qeii in time
ei
√
qi .

3. Can use Chinese remainder theorem to reconstruct log mod q.

Best practice: To avoid attacks, choose group so that g
generates subgroup of prime order q > 2160.

Short exponents with smooth-order primes: A sad tale
[van Oorschot, Wiener]

In recent Logjam work [ABDGGHHSTVVWZZ 2015], we scanned
entire internet to study Diffie-Hellman usage in HTTPS.

I Found 4800 groups (p, g) where (p − 1)/2 was not prime.

I Applied ECM to opportunistically factor (p − 1)/2.

I Learned prime factors of order of g for 750 groups, used in
40,000 connections across our Internet scans.

I Some implementations use short exponents x in g x of length
128 or 160 bits.

I If x <
∏

i q
ei
i for qeii dividing order of g , can use Pollard

rho+CRT to recover x in maxi
√
qi time.

I Implemented Pohlig-Hellman algorithm to test if servers used
short exponents; computed information about secret exponent
in 460 exchanges, and whole exponent for 159 hosts.

Short exponents with smooth-order primes: A sad tale
[van Oorschot, Wiener]

In recent Logjam work [ABDGGHHSTVVWZZ 2015], we scanned
entire internet to study Diffie-Hellman usage in HTTPS.

I Found 4800 groups (p, g) where (p − 1)/2 was not prime.

I Applied ECM to opportunistically factor (p − 1)/2.

I Learned prime factors of order of g for 750 groups, used in
40,000 connections across our Internet scans.

I Some implementations use short exponents x in g x of length
128 or 160 bits.

I If x <
∏

i q
ei
i for qeii dividing order of g , can use Pollard

rho+CRT to recover x in maxi
√
qi time.

I Implemented Pohlig-Hellman algorithm to test if servers used
short exponents; computed information about secret exponent
in 460 exchanges, and whole exponent for 159 hosts.

Short exponents with smooth-order primes: A sad tale
[van Oorschot, Wiener]

In recent Logjam work [ABDGGHHSTVVWZZ 2015], we scanned
entire internet to study Diffie-Hellman usage in HTTPS.

I Found 4800 groups (p, g) where (p − 1)/2 was not prime.

I Applied ECM to opportunistically factor (p − 1)/2.

I Learned prime factors of order of g for 750 groups, used in
40,000 connections across our Internet scans.

I Some implementations use short exponents x in g x of length
128 or 160 bits.

I If x <
∏

i q
ei
i for qeii dividing order of g , can use Pollard

rho+CRT to recover x in maxi
√
qi time.

I Implemented Pohlig-Hellman algorithm to test if servers used
short exponents; computed information about secret exponent
in 460 exchanges, and whole exponent for 159 hosts.

Subexponential-time algorithms: Index calculus

Goal: Solve g ` ≡ t mod p.

Fix some a priori smoothness bound B.

1. Relation finding: Enumerate pairs of B-smooth integers
equivalent mod p.

pa111 . . .Ba1k = 1 ≡ p + 1 = pr111 pr122 . . .B r1k

pa211 . . .Ba2k = 2 ≡ p + 2 = pr211 pr222 . . .B r2k

...

pak11 . . .Bakk = z ≡ p + z = prk11 prk22 . . .B rkk

Subexponential-time algorithms: Index calculus

Goal: Solve g ` ≡ t mod p.

Fix some a priori smoothness bound B.

1. Relation finding: Enumerate pairs of B-smooth integers
equivalent mod p.

pa111 . . .Ba1k = 1 ≡ p + 1 = pr111 pr122 . . .B r1k

pa211 . . .Ba2k = 2 ≡ p + 2 = pr211 pr222 . . .B r2k

...

pak11 . . .Bakk = z ≡ p + z = prk11 prk22 . . .B rkk

Index calculus: Linear algebra

Take log of both sides. Assume subgroup of order q. Then

a11 log p1 + · · ·+ a1k log pk ≡ r11 log p1 + · · ·+ r1k logB mod q

a21 log p1 + · · ·+ a2k log pk ≡ r21 log p1 + · · ·+ r2k logB mod q

...

ak1 log p1 + · · ·+ akk log pk ≡ rk1 log p1 + · · ·+ rkk logB mod q

Also get some relations for free: log−1 = (p − 1)/2...

2. Linear Algebra: Solve system of equations for log pi :

log p1 ≡ s1
...

log pk ≡ sk

Actually computing individual logs

Input target t.

3. Try to find some B-smooth value

gRt = pe11 . . .BeB

Then using known values of log pi write

log t = −R + e1 log p1 + · · ·+ eB logB mod q

Index calculus running time

1. Relation collection Runtime depends on (1) work to test if
integer is B-smooth, (2) probability integer is B-smooth, (3)
B.

2. Linear algebra Runtime depends on cost of sparse linear
algebra for B-dimensional matrix mod q.

3. Individual log Runtime depends on probability that gRt is
B-smoooth.

Optimizing for B gives runtime of

exp((
√

2 + o(1))
√

log p log log p) = Lp(1/2,
√

2)

Number field sieve
[Gordon], [Joux, Lercier], [Semaev]

1. Polynomial selection: Find a polynomial f and an integer m
such that f (m) ≡ 0 mod p, deg f = 5 or 6, coeffs of f
relatively small. Defines a number field Q(x)/f (x).

For γ =
∑

i aiα
i in ring of integers, define homomorphism

ϕ(γ) =
∑

i aim
i to Z/pZ.

2. Relation collection Collect relations of form

p1
a11 . . .Ba1k = a + bα ≡ a + bm = pr111 . . . pr1kk

3. Linear algebra Once there are enough relations, solve for
log pi .

4. Individual log “Descent” Try to write target t as sum of logs
in known database.

Implementing the NFS with CADO-NFS

p

polynomial
selection

sieving linear
algebra

log db

precomputation

t, g descent

`

individual log

L(1/3, 1.923) L(1/3, 1.232)

Sieving Linear Algebra Descent

I lpb core-years rows core-years core-time

RSA-512 14 29 0.5 4.3M 0.33
DH-512 15 27 2.5 2.1M 7.7 10 mins

Times for cluster computation:

polysel sieving linalg descent

2000-3000 cores 288 cores 24 cores

DH-512 3 hours 15 hours 120 hours 90 seconds

Does anyone use 512-bit Diffie-Hellman?

Export cipher suites in TLS

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_Anon_EXPORT_WITH_RC4_40_MD5

TLS_DH_Anon_EXPORT_WITH_DES40_CBC_SHA

In April 2015, DHE EXPORT cipher suites supported by 8.4% of
the Alexa top 1 Million!

Logjam attack [ABDGGHHSTVVWZZ 2015]: Use fast 512-bit
discrete log in fixed groups to downgrade HTTPS connections to
insecure DHE EXPORT cipher suites.

Scaling discrete log computations to larger key sizes

Vulnerable servers, if the attacker can precompute for . . .

all 512-bit p all 768-bit p one 1024-bit p ten 1024-bit p

HTTPS Top 1M MITM 45K (8.4%) 45K (8.4%) 205K (37.1%) 309K (56.1%)
HTTPS Top 1M 118 (0.0%) 407 (0.1%) 98.5K (17.9%) 132K (24.0%)
HTTPS Trusted MITM 489K (3.4%) 556K (3.9%) 1.84M (12.8%) 3.41M (23.8%)
HTTPS Trusted 1K (0.0%) 46.7K (0.3%) 939K (6.56%) 1.43M (10.0%)

IKEv1 IPv4 – 64K (2.6%) 1.69M (66.1%) 1.69M (66.1%)
IKEv2 IPv4 – 66K (5.8%) 726K (63.9%) 726K (63.9%)

SSH IPv4 – – 3.6M (25.7%) 3.6M (25.7%)

Summary

I RSA and “mod-p” Diffie-Hellman are old and busted.

I (At least for ≤ 1024-bit keys.)

I Elliptic curves are the new hotness. (See Tanja’s talk!)

